Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 50.190
Filtrar
1.
eNeuro ; 11(4)2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38565296

RESUMEN

Repetitive transcranial magnetic stimulation (rTMS) is a non-invasive brain stimulation technique capable of inducing neuroplasticity as measured by changes in peripheral muscle electromyography (EMG) or electroencephalography (EEG) from pre-to-post stimulation. However, temporal courses of neuromodulation during ongoing rTMS are unclear. Monitoring cortical dynamics via TMS-evoked responses using EMG (motor-evoked potentials; MEPs) and EEG (transcranial-evoked potentials; TEPs) during rTMS might provide further essential insights into its mode of action - temporal course of potential modulations. The objective of this study was to first evaluate the validity of online rTMS-EEG and rTMS-EMG analyses, and second to scrutinize the temporal changes of TEPs and MEPs during rTMS. As rTMS is subject to high inter-individual effect variability, we aimed for single-subject analyses of EEG changes during rTMS. Ten healthy human participants were stimulated with 1,000 pulses of 1 Hz rTMS over the motor cortex, while EEG and EMG were recorded continuously. Validity of MEPs and TEPs measured during rTMS was assessed in sensor and source space. Electrophysiological changes during rTMS were evaluated with model fitting approaches on a group- and single-subject level. TEPs and MEPs appearance during rTMS was consistent with past findings of single pulse experiments. Heterogeneous temporal progressions, fluctuations or saturation effects of brain activity were observed during rTMS depending on the TEP component. Overall, global brain activity increased over the course of stimulation. Single-subject analysis revealed inter-individual temporal courses of global brain activity. The present findings are in favor of dose-response considerations and attempts in personalization of rTMS protocols.


Asunto(s)
Corteza Motora , Estimulación Magnética Transcraneal , Humanos , Electromiografía/métodos , Estimulación Magnética Transcraneal/métodos , Corteza Motora/fisiología , Electroencefalografía , Músculo Esquelético/fisiología
2.
Scand J Med Sci Sports ; 34(4): e14630, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38644663

RESUMEN

The effects of a 12-week gait retraining program on the adaptation of the medial gastrocnemius (MG) and muscle-tendon unit (MTU) were investigated. 26 runners with a rearfoot strike pattern (RFS) were randomly assigned to one of two groups: gait retraining (GR) or control group (CON). MG ultrasound images, marker positions, and ground reaction forces (GRF) were collected twice during 9 km/h of treadmill running before and after the intervention. Ankle kinetics and the MG and MTU behavior and dynamics were quantified. Runners in the GR performed gradual 12-week gait retraining transitioning to a forefoot strike pattern. After 12-week, (1) ten participants in each group completed the training; eight participants in GR transitioned to non-RFS with reduced foot strike angles; (2) MG fascicle contraction length and velocity significantly decreased after the intervention for both groups, whereas MG forces increased after intervention for both groups; (3) significant increases in MTU stretching length for GR and peak MTU recoiling velocity for both groups were observed after the intervention, respectively; (4) no significant difference was found for all parameters of the series elastic element. Gait retraining might potentially influence the MG to operate at lower fascicle contraction lengths and velocities and produce greater peak forces. The gait retraining had no effect on SEE behavior and dynamics but did impact MTU, suggesting that the training was insufficient to induce mechanical loading changes on SEE behavior and dynamics.


Asunto(s)
Marcha , Músculo Esquelético , Carrera , Zapatos , Tendones , Humanos , Carrera/fisiología , Músculo Esquelético/fisiología , Marcha/fisiología , Masculino , Fenómenos Biomecánicos , Adulto , Tendones/fisiología , Adulto Joven , Femenino , Ultrasonografía , Adaptación Fisiológica
3.
J Strength Cond Res ; 38(5): 815-824, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38662880

RESUMEN

ABSTRACT: Stahl, CA, Regni, G, Tanguay, J, McElfresh, M, Trihy, E, Diggin, D, and King, DL. A biomechanical comparison of the back squat and hexagonal barbell deadlift. J Strength Cond Res 38(5): 815-824, 2024-Coaches often use different exercises to encourage similar strength adaptations and limit monotony. Anecdotally, the hexagonal barbell deadlift (HBD) exhibits similarities to the back squat (BS). To date, research has not examined the empirical differences between these exercises. This study examined kinematic and kinetic differences between the BS and the HBD across different loads. Sixteen resistance-trained individuals (6 men and 10 women) volunteered to participate. Subjects performed 1-repetition maximum (1RM) testing under BS and HBD conditions. Kinematic and kinetic data were collected during performance of both exercises at submaximal (warm-up sets) and maximal (1RM) loads using a 3D motion capture and force-plate system. Results showed that subjects lifted greater 1RM loads in the HBD relative to the BS (p < 0.05; d = -1.75). Kinematic data indicated that subjects exhibited greater maximum forward lean of the trunk and decreased maximum knee flexion while performing the HBD compared with the BS. The BS resulted in higher maximum extension moments at the hip joint than the HBD. Maximum extension moments at the knee joint showed no difference between the exercises. Data suggest that bar design and position facilitate balanced moment arm length at hip and knee joints during performance of the HBD. By contrast, bar position during performance of the BS increases moment arm length at the hip joint, making it a hip-dominant exercise. The present data have implications for the programming of both exercises. Future research should examine differences in muscle-activation strategies between the 2 exercises.


Asunto(s)
Entrenamiento de Fuerza , Levantamiento de Peso , Humanos , Fenómenos Biomecánicos , Masculino , Femenino , Entrenamiento de Fuerza/métodos , Levantamiento de Peso/fisiología , Adulto Joven , Adulto , Fuerza Muscular/fisiología , Músculo Esquelético/fisiología , Articulación de la Cadera/fisiología
4.
J Strength Cond Res ; 38(5): 951-956, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38662887

RESUMEN

ABSTRACT: González-Cano, H, Martín-Olmedo, JJ, Baz-Valle, E, Contreras, C, Schoenfeld, BJ, García-Ramos, A, Jiménez-Martínez, P, and Alix-Fages, C. Do muscle mass and body fat differ between elite and amateur natural physique athletes on competition day? A preliminary, cross-sectional, anthropometric study. J Strength Cond Res 38(5): 951-956, 2024-Natural physique athletes strive to achieve low body fat levels while promoting muscle mass hypertrophy for competition day. This study aimed to compare the anthropometric characteristics of natural amateur (AMA) and professional (PRO) World Natural Bodybuilding Federation (WNBF) competitors. Eleven male natural physique athletes (6 PRO and 5 AMA; age = 24.8 ± 2.3 years) underwent a comprehensive anthropometric evaluation following the International Society for the Advancement of Kinanthropometry protocol within a 24-hour time frame surrounding the competition. The 5-component fractionation method was used to obtain the body composition profile of the muscle, adipose, bone, skin, and residual tissues. Five physique athletes exceeded the 5.2 cutoff point of muscle-to-bone ratio (MBR) for natural athletes. Professional physique athletes were older than AMA physique athletes (p = 0.05), and they also presented larger thigh girths (p = 0.005) and bone mass (p = 0.019) compared with AMA physique athletes. Although no statistically significant between-group differences were observed in body mass, height, or body fat levels, PRO physique athletes exhibited a higher body mass index (BMI; AMA: 24.45 ± 0.12; PRO: 25.52 ± 1.01; p = 0.048), lean body mass (LBM; AMA: 64.49 ± 2.35; PRO: 69.80 ± 3.78; p = 0.024), fat-free mass (FFM; AMA: 71.23 ± 3.21; PRO: 76.52 ± 4.31; p = 0.05), LBM index (LBMI; AMA: 20.65 ± 0.52; PRO: 21.74 ± 0.85; p = 0.034), and fat-free mass index index (FFMI; AMA: 22.80 ± 0.22; PRO: 23.83 ± 0.90; p = 0.037) compared with AMA physique athletes. These findings highlight the unique characteristics and anthropometric differences between PRO and AMA natural physique athletes on competition day, emphasizing the significance of age, thigh girth, bone mass, BMI, LBM, FFM, and FFMI in distinguishing these 2 groups. Based on our findings, the established boundaries for muscle mass in natural physique athletes, based on FFMI and MBR, warrant reconsideration.


Asunto(s)
Tejido Adiposo , Antropometría , Atletas , Composición Corporal , Músculo Esquelético , Humanos , Masculino , Estudios Transversales , Adulto Joven , Tejido Adiposo/anatomía & histología , Tejido Adiposo/fisiología , Músculo Esquelético/fisiología , Músculo Esquelético/anatomía & histología , Adulto , Composición Corporal/fisiología , Levantamiento de Peso/fisiología
5.
J Strength Cond Res ; 38(5): e211-e218, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38662888

RESUMEN

ABSTRACT: Corrêa Neto, VG, Silva, DdN, Palma, A, de Oliveira, F, Vingren, JL, Marchetti, PH, da Silva Novaes, J, and Monteiro, ER. Comparison between traditional and alternated resistance exercises on blood pressure, acute neuromuscular responses, and rating of perceived exertion in recreationally resistance-trained men. J Strength Cond Res 38(5): e211-e218, 2024-The purpose of this study was to compare the acute effects of traditional and alternated resistance exercises on acute neuromuscular responses (maximum repetition performance, fatigue index, and volume load), rating of perceived exertion (RPE), and blood pressure (BP) in resistance-trained men. Fifteen recreationally resistance-trained men (age: 26.40 ± 4.15 years; height: 173 ± 5 cm, and total body mass: 78.12 ± 13.06 kg) were recruited and performed all 3 experimental conditions in a randomized order: (a) control (CON), (b) traditional (TRT), and (c) alternated (ART). Both conditions (TRT and ART) consisted of 5 sets of bilateral bench press, articulated bench press, back squat, and Smith back squat exercises at 80% 1RM until concentric muscular failure. The total number of repetitions performed across sets in the bench press followed a similar pattern for TRT and ART, with significant reductions between sets 3, 4, and 5 compared with set 1 (p < 0.05). There was a significant difference for set 4 between conditions with a lower number of repetitions performed in the TRT. The volume load was significantly higher for ART when compared with TRT. TRT showed significant reductions in BP after 10-, 40-, and 60-minute postexercise and when compared with CON after 40- and 60-minute postexercise. However, the effect size illustrated large reductions in systolic BP during recovery in both methods. Thus, it is concluded that both methods reduced postexercise BP.


Asunto(s)
Presión Sanguínea , Esfuerzo Físico , Entrenamiento de Fuerza , Humanos , Masculino , Entrenamiento de Fuerza/métodos , Esfuerzo Físico/fisiología , Adulto , Presión Sanguínea/fisiología , Adulto Joven , Levantamiento de Peso/fisiología , Músculo Esquelético/fisiología , Fuerza Muscular/fisiología , Fatiga Muscular/fisiología , Percepción/fisiología
6.
J Strength Cond Res ; 38(5): e219-e225, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38662889

RESUMEN

ABSTRACT: Ortega, DG, Housh, TJ, Smith, RW, Arnett, JE, Neltner, TJ, Schmidt, RJ, and Johnson, GO. The effects of anchoring a fatiguing forearm flexion task to a high versus low rating of perceived exertion on torque and neuromuscular responses. J Strength Cond Res 38(5): e219-e225, 2024-This study examined the torque and neuromuscular responses following sustained, isometric, forearm flexion tasks anchored to 2 ratings of perceived exertion (RPE). Nine men (mean ± SD: age = 21.0 ± 2.4 years; height = 179.5 ± 5.1 cm; body mass = 79.6 ± 11.4 kg) completed maximal voluntary isometric contractions (MVIC) before and after sustained, isometric, forearm flexion tasks to failure anchored to RPE = 2 and RPE = 8. The amplitude (AMP) and mean power frequency (MPF) of the electromyographic (EMG) signal were recorded from the biceps brachii. Normalized torque was divided by normalized EMG AMP to calculate neuromuscular efficiency (NME). A dependent t-test was used to assess the mean difference for time to task failure (TTF). Repeated-measures analysis of variances was used to compare mean differences for MVIC and normalized neuromuscular parameters. There was no significant difference in TTF between RPE = 2 and RPE = 8 (p = 0.713). The MVIC decreased from pretest to posttest at RPE = 2 (p = 0.009) and RPE = 8 (p = 0.003), and posttest MVIC at RPE = 8 was less than that at RPE = 2 (p < 0.001). In addition, NME decreased from pretest to posttest (p = 0.008). There was no change in normalized EMG AMP or EMG MPF (p > 0.05). The current findings indicated that torque responses were intensity specific, but TTF and neuromuscular responses were not. Furthermore, normalized EMG AMP and EMG MPF remained unchanged but NME decreased, likely due to peripheral fatigue and excitation-contraction coupling failure. Thus, this study provides information regarding the neuromuscular responses and mechanisms of fatigue associated with tasks anchored to RPE, which adds to the foundational understanding of the relationship between resistance exercise and the perception of fatigue.


Asunto(s)
Electromiografía , Antebrazo , Contracción Isométrica , Fatiga Muscular , Músculo Esquelético , Esfuerzo Físico , Torque , Humanos , Masculino , Adulto Joven , Antebrazo/fisiología , Contracción Isométrica/fisiología , Esfuerzo Físico/fisiología , Fatiga Muscular/fisiología , Músculo Esquelético/fisiología , Percepción/fisiología , Adulto
7.
PLoS One ; 19(4): e0297540, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38635774

RESUMEN

Emotion affects postural control during quiet standing. Emotional states can be defined as two-dimensional models comprising valence (pleasant/unpleasant) and arousal (aroused/calm). Most previous studies have investigated the effects of valence on postural control without considering arousal. In addition, studies have focused on the center of pressure (COP) trajectory to examine emotional effects on the quiet standing control; however, the relationship between neuromuscular mechanisms and the emotionally affected quiet standing control is largely unknown. This study aimed to investigate the effects of arousal and valence on the COP trajectory and ankle muscle activity during quiet standing. Twenty-two participants were instructed to stand on a force platform and look at affective pictures for 72 seconds. The tasks were repeated six times, according to the picture conditions composed of arousal (High and Low) and valence (Pleasant, Neutral, and Unpleasant). During the task, the COP, electromyogram (EMG) of the tibialis anterior and soleus muscles, and electrocardiogram (ECG) were recorded. The heart rate calculated from the ECG was significantly affected by valence; the value was lower in Unpleasant than that in Neutral and Pleasant. The 95% confidence ellipse area and standard deviation of COP in the anterior-posterior direction were lower, and the mean power frequency of COP in the anterior-posterior direction was higher in Unpleasant than in Pleasant. Although the mean velocity of the COP in the medio-lateral direction was significantly lower in Unpleasant than in Pleasant, the effect was observed only when arousal was low. Although the EMG variables were not significantly affected by emotional conditions, some EMG variables were significantly correlated with the COP variables that were affected by emotional conditions. Therefore, ankle muscle activity may be partially associated with postural changes triggered by emotional intervention. In conclusion, both valence and arousal affect the COP variables, and ankle muscle activity may be partially associated with these COP changes.


Asunto(s)
Tobillo , Emociones , Humanos , Tobillo/fisiología , Emociones/fisiología , Extremidad Inferior , Músculo Esquelético/fisiología , Equilibrio Postural/fisiología , Nivel de Alerta/fisiología
8.
J Strength Cond Res ; 38(5): 825-834, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38595263

RESUMEN

ABSTRACT: Johansson, DG, Marchetti, PH, Stecyk, SD, and Flanagan, SP. A biomechanical comparison between the safety-squat bar and traditional barbell back squat. J Strength Cond Res 38(5): 825-834, 2024-The primary objectives for this investigation were to compare the kinematic and kinetic differences between performing a parallel back squat using a traditional barbell (TB) or a safety-squat bar (SSB). Fifteen healthy, recreationally trained male subjects (23 + 4 years of age) performed the back squat with a TB and an SSB at 85% of their respective 1 repetition maximum with each barbell while instrumented for biomechanical analysis. Standard inverse dynamics techniques were used to determine joint kinematic and kinetic measures. A 2 × 3 (exercise × joint) factorial analysis of variance with repeated measures was used to determine the kinetic and kinematic differences between the squats while using the different barbells. Fisher's least significant difference post hoc comparisons showed that the TB resulted in significantly greater maximum hip flexion angle (129.33 ± 11.8° vs. 122.11 ± 12.1°; p < 0.001; d = 1.80), peak hip net joint extensor torque (2.54 ± 0.4 Nm·kg -1 vs. 2.40 ± 0.4 Nm·kg -1 ; p = 0.001; d = 1.10), hip net extensor torque mechanical energy expenditure (MEE; 2.81 ± 0.5 Nm·kg -1 vs. 2.58 ± 0.6 Nm·kg -1 ; p = 0.002; d = 0.97), and ankle net joint plantar flexor torque MEE (0.32 ± 0.09 J·kg -1 vs. 0.28 ± 0.06 J·kg -1 ; p = 0.029; d = 0.63), while also lifting significantly (123.17 ± 20.8 kg vs. 117.17 ± 20.8 kg; p = 0.005; d = 0.858) more weight than the SSB. The SSB resulted in significantly higher maximum knee flexion angles (116.82 ± 5.8° vs. 115.65 ± 5.6°; p = 0.011; d = 0.75) than the TB, with no significant difference in kinetics at the knee. The TB may be preferred to the SSB for developing the hip extensors and lifting higher maximum loads. The SSB may be advantageous in situations where a more upright posture or a lower load is preferred while creating a similar demand for the knee joint.


Asunto(s)
Articulación de la Rodilla , Humanos , Masculino , Fenómenos Biomecánicos , Adulto Joven , Adulto , Articulación de la Rodilla/fisiología , Articulación de la Cadera/fisiología , Torque , Levantamiento de Peso/fisiología , Músculo Esquelético/fisiología , Articulación del Tobillo/fisiología , Entrenamiento de Fuerza/métodos , Rango del Movimiento Articular/fisiología
9.
Sci Rep ; 14(1): 9125, 2024 04 21.
Artículo en Inglés | MEDLINE | ID: mdl-38643231

RESUMEN

This study investigates the relationship between ankle and toe strength and functional stability in young adults, with a sample comprising sixteen females and fourteen males. The research employed force platform data to determine the center of foot pressure (COP) and calculated the forward functional stability index (FFSI) through foot anthropometric measurements. Strength measurements of toe and ankle muscles, during maximal isometric flexion and extension, were conducted using force transducers. Notable positive correlations were found between toe flexor strength and FFSI (left flexor: r = 0.4, right flexor: r = 0.38, p < 0.05), not influenced by foot anthropometry. Contrarily, no significant correlation was observed between ankle muscle strength and FFSI, despite a positive correlation with the COP range. The moderate correlation coefficients suggest that while toe flexor strength is a contributing factor to functional stability, it does not solely determine functional stability. These findings highlight the critical role of muscle strength in maintaining functional stability, particularly during forward movements and emphasize the utility of FFSI alongside traditional COP measures in balance assessment. It is recommended to employ a multifaceted approach is required in balance training programs.


Asunto(s)
Tobillo , Dedos del Pie , Masculino , Femenino , Adulto Joven , Humanos , Dedos del Pie/fisiología , Pie/fisiología , Articulación del Tobillo/fisiología , Músculo Esquelético/fisiología , Fuerza Muscular/fisiología
10.
J Physiol Sci ; 74(1): 25, 2024 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-38622533

RESUMEN

The purpose of this study was the detection and characterization of synergistic muscle activity. Using T2-map MRI, T2 values for 10 forearm muscles in 11 healthy adult volunteers were obtained in the resting state and after isotonic forearm supination and pronation exercises with the elbow extended. T2 was normalized by Z = (T2e-T2r)/SDr, where T2e was T2 after exercise, while T2r and SDr were the reference values of 34 ms and 3 ms, respectively. Using the cumulative frequency curves of Z values (CFZ), we detected 2 and 3 synergistic muscles for supination and pronation, respectively, and divided these into 2 types, one activated by exercise strength dependently, and the other, independent of exercise strength, activated by only a smaller fraction of the participants. We also detected co-contraction for the supination. Thus, CFZ is a useful visualization tool to detect and characterize not only synergistic muscle, but also co-contraction muscle.


Asunto(s)
Antebrazo , Músculo Esquelético , Adulto , Humanos , Músculo Esquelético/diagnóstico por imagen , Músculo Esquelético/fisiología , Codo/fisiología , Contracción Muscular/fisiología , Imagen por Resonancia Magnética
11.
J Biomech ; 167: 112089, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38608614

RESUMEN

Skeletal muscles are complex structures with nonlinear constitutive properties. This complexity often requires finite element (FE) modeling to better understand muscle behavior and response to activation, especially the fiber strain distributions that can be difficult to measure in vivo. However, many FE muscle models designed to study fiber strain do not include force-velocity behavior. To investigate force-velocity property impact on strain distributions within skeletal muscle, we modified a muscle constitutive model with active and passive force-length properties to include force-velocity properties. We implemented the new constitutive model as a plugin for the FE software FEBio and applied it to four geometries: 1) a single element, 2) a multiple-element model representing a single fiber, 3) a model of tapering fibers, and 4) a model representing the bicep femoris long head (BFLH) morphology. Maximum fiber velocity and boundary conditions of the finite element models were varied to test their influence on fiber strain distribution. We found that force-velocity properties in the constitutive model behaved as expected for the single element and multi-element conditions. In the tapered fiber models, fiber strain distributions were impacted by changes in maximum fiber velocity; the range of strains increased with maximum fiber velocity, which was most noted in isometric contraction simulations. In the BFLH model, maximum fiber velocity had minimal impact on strain distributions, even in the context of sprinting. Taken together, the combination of muscle model geometry, activation, and displacement parameters play a critical part in determining the magnitude of impact of force-velocity on strain distribution.


Asunto(s)
Músculos Isquiosurales , Contracción Muscular , Contracción Muscular/fisiología , Simulación por Computador , Músculo Esquelético/fisiología , Contracción Isométrica/fisiología , Fibras Musculares Esqueléticas/fisiología , Modelos Biológicos
12.
J Biomech ; 167: 112093, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38615480

RESUMEN

In general, muscle activity can be directly measured using Electromyography (EMG) or calculated with musculoskeletal models. However, both methods are not suitable for non-technical users and unstructured environments. It is desired to establish more portable and easy-to-use muscle activity estimation methods. Deep learning (DL) models combined with inertial measurement units (IMUs) have shown great potential to estimate muscle activity. However, it frequently occurs in clinical scenarios that a very small amount of data is available and leads to limited performance of the DL models, while the augmentation techniques to efficiently expand a small sample size for DL model training are rarely used. The primary aim of the present study was to develop a novel DL model to estimate the EMG envelope during gait using IMUs with high accuracy. A secondary aim was to develop a novel model-based data augmentation method to improve the performance of the estimation model with small-scale dataset. Therefore, in the present study, a time convolutional network-based generative adversarial network, namely MuscleGAN, was proposed for data augmentation. Moreover, a subject-independent regression DL model was developed to estimate EMG envelope. Results suggested that the proposed two-stage method has better generalization and estimation performance than the commonly used existing methods. Pearson correlation coefficient and normalized root-mean-square errors derived from the proposed method reached up to 0.72 and 0.13, respectively. It was indicated that the MuscleGAN indeed improved the estimation accuracy of lower limb EMG envelope from 70% to 72%. Thus, even using only two IMUs and a very small-scale dataset, the proposed model is still capable of accurately estimating lower limb EMG envelope, demonstrating considerable potential for its application in clinical and daily life scenarios.


Asunto(s)
Marcha , Redes Neurales de la Computación , Marcha/fisiología , Electromiografía/métodos , Músculo Esquelético/fisiología , Atención
13.
PLoS One ; 19(4): e0300818, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38573888

RESUMEN

INTRODUCTION: Previous studies have highlighted the association between lower limb muscle strength and falls in older adults. However, a comprehensive understanding of the specific influence of each lower limb muscle group on fall occurrences remains lacking. OBJECTIVE: This study aimed to investigate the impact of knee, ankle, and hip muscle strength and power on falls in older adults, with the goal of identifying which muscle groups are more predictive of fall risk in this population. METHODS: This longitudinal observational study enrolled 94 community-dwelling older adults. Muscle strength and power of the ankle's plantiflexors and dorsiflexors, knee flexors and extensors, and hip flexors, extensors, adductors, and abductors were assessed using a Biodex System 4 Pro® isokinetic dynamometer. Fall occurrences were monitored through monthly telephone contact over a year. RESULTS: Participants, with a median age of 69 years (range 64-74), included 67% women, and 63.8% reported a sedentary lifestyle. Among them, 45,7% of older adults were classified as fallers. Comparative analyses revealed that non-fallers displayed significantly superior isokinetic muscle strength in the hip abductors and adductors, along with higher muscle power in the hip abductors, hip flexors, and knee flexors compared to fallers. Multivariate logistic regression analysis indicated that a 1 Nm/Kg increase in hip abductor strength reduced the chance of a fall by 86.3%, and a 1 Watt increase in hip flexor power reduced the chance of a fall by 3.6%. CONCLUSION: The findings indicate that hip abductor strength and hip flexor power can be considered protective factors against falls in independent older adults in the community. These findings may contribute to developing effective fall-prevention strategies for this population.


Asunto(s)
Accidentes por Caídas , Vida Independiente , Humanos , Femenino , Anciano , Persona de Mediana Edad , Masculino , Estudios Longitudinales , Accidentes por Caídas/prevención & control , Extremidad Inferior/fisiología , Músculo Esquelético/fisiología , Fuerza Muscular/fisiología
14.
J Exp Biol ; 227(7)2024 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-38563308

RESUMEN

Vocalisations play a key role in the communication behaviour of many vertebrates. Vocal production requires extremely precise motor control, which is executed by superfast vocal muscles that can operate at cycle frequencies over 100 Hz and up to 250 Hz. The mechanical performance of these muscles has been quantified with isometric performance and the workloop technique, but owing to methodological limitations we lack a key muscle property characterising muscle performance, the force-velocity relationship. Here, we quantified the force-velocity relationship in zebra finch superfast syringeal muscles using the isovelocity technique and tested whether the maximal shortening velocity is different between males and females. We show that syringeal muscles exhibit high maximal shortening velocities of 25L0 s-1 at 30°C. Using Q10-based extrapolation, we estimate they can reach 37-42L0 s-1 on average at body temperature, exceeding other vocal and non-avian skeletal muscles. The increased speed does not adequately compensate for reduced force, which results in low power output. This further highlights the importance of high-frequency operation in these muscles. Furthermore, we show that isometric properties positively correlate with maximal shortening velocities. Although male and female muscles differ in isometric force development rates, maximal shortening velocity is not sex dependent. We also show that cyclical methods to measure force-length properties used in laryngeal studies give the same result as conventional stepwise methodologies, suggesting either approach is appropriate. We argue that vocal behaviour may be affected by the high thermal dependence of superfast vocal muscle performance.


Asunto(s)
Pinzones , Laringe , Animales , Femenino , Masculino , Músculo Esquelético/fisiología , Pinzones/fisiología , Contracción Muscular/fisiología
15.
J Neuroeng Rehabil ; 21(1): 47, 2024 04 04.
Artículo en Inglés | MEDLINE | ID: mdl-38575926

RESUMEN

Decoding movement intentions from motor unit (MU) activities to represent neural drive information plays a central role in establishing neural interfaces, but there remains a great challenge for obtaining precise MU activities during sustained muscle contractions. In this paper, we presented an online muscle force prediction method driven by individual MU activities that were decomposed from prolonged surface electromyogram (SEMG) signals in real time. In the training stage of the proposed method, a set of separation vectors was initialized for decomposing MU activities. After transferring each decomposed MU activity into a twitch force train according to its action potential waveform, a neural network was designed and trained for predicting muscle force. In the subsequent online stage, a practical double-thread-parallel algorithm was developed. One frontend thread predicted the muscle force in real time utilizing the trained network and the other backend thread simultaneously updated the separation vectors. To assess the performance of the proposed method, SEMG signals were recorded from the abductor pollicis brevis muscles of eight subjects and the contraction force was simultaneously collected. With the update procedure in the backend thread, the force prediction performance of the proposed method was significantly improved in terms of lower root mean square deviation (RMSD) of around 10% and higher fitness (R2) of around 0.90, outperforming two conventional methods. This study provides a promising technique for real-time myoelectric applications in movement control and health.


Asunto(s)
Contracción Muscular , Músculo Esquelético , Humanos , Electromiografía/métodos , Músculo Esquelético/fisiología , Contracción Muscular/fisiología , Potenciales de Acción , Redes Neurales de la Computación
16.
Sheng Li Xue Bao ; 76(2): 301-308, 2024 Apr 25.
Artículo en Chino | MEDLINE | ID: mdl-38658378

RESUMEN

Delayed-onset muscle soreness (DOMS) is a common phenomenon that occurs following a sudden increase in exercise intensity or unfamiliar exercise, significantly affecting athletic performance and efficacy in athletes and fitness individuals. DOMS is characterized by allodynia and hyperalgesia, and their mechanisms remain unclear. Recent studies have reported that neurotrophic factors, such as nerve growth factor (NGF) and glial cell derived neurotrophic factor (GDNF), are involved in the development and maintenance of DOMS. This article provides a review of the research progress on the signaling pathways related to the involvement of NGF and GDNF in DOMS, hoping to provide novel insights into the mechanisms underlying allodynia and hyperalgesia in DOMS, as well as potential targeted treatment.


Asunto(s)
Factor Neurotrófico Derivado de la Línea Celular Glial , Mialgia , Factor de Crecimiento Nervioso , Humanos , Mialgia/fisiopatología , Factor de Crecimiento Nervioso/metabolismo , Factor de Crecimiento Nervioso/fisiología , Factor Neurotrófico Derivado de la Línea Celular Glial/metabolismo , Factor Neurotrófico Derivado de la Línea Celular Glial/fisiología , Transducción de Señal , Animales , Hiperalgesia/fisiopatología , Músculo Esquelético/fisiopatología , Músculo Esquelético/fisiología , Ejercicio Físico/fisiología
17.
Sci Rep ; 14(1): 8475, 2024 04 11.
Artículo en Inglés | MEDLINE | ID: mdl-38605084

RESUMEN

Prolonged local vibration (LV) can induce neurophysiological adaptations thought to be related to long-term potentiation or depression. Yet, how changes in intracortical excitability may be involved remains to be further investigated as previous studies reported equivocal results. We therefore investigated the effects of 30 min of LV applied to the right flexor carpi radialis muscle (FCR) on both short-interval intracortical inhibition (SICI) and intracortical facilitation (ICF). SICI and ICF were measured through transcranial magnetic stimulation before and immediately after 30 min of FCR LV (vibration condition) or 30 min of rest (control condition). Measurements were performed during a low-intensity contraction (n = 17) or at rest (n = 7). No significant SICI nor ICF modulations were observed, whether measured during isometric contractions or at rest (p = 0.2). Yet, we observed an increase in inter-individual variability for post measurements after LV. In conclusion, while intracortical excitability was not significantly modulated after LV, increased inter-variability observed after LV may suggest the possibility of divergent responses to prolonged LV exposure.


Asunto(s)
Corteza Motora , Vibración , Electromiografía/métodos , Potenciales Evocados Motores/fisiología , Corteza Motora/fisiología , Músculo Esquelético/fisiología , Estimulación Magnética Transcraneal/métodos , Inhibición Neural/fisiología
18.
Cells ; 13(7)2024 Mar 29.
Artículo en Inglés | MEDLINE | ID: mdl-38607035

RESUMEN

Cell therapies derived from induced pluripotent stem cells (iPSCs) offer a promising avenue in the field of regenerative medicine due to iPSCs' expandability, immune compatibility, and pluripotent potential. An increasing number of preclinical and clinical trials have been carried out, exploring the application of iPSC-based therapies for challenging diseases, such as muscular dystrophies. The unique syncytial nature of skeletal muscle allows stem/progenitor cells to integrate, forming new myonuclei and restoring the expression of genes affected by myopathies. This characteristic makes genome-editing techniques especially attractive in these therapies. With genetic modification and iPSC lineage specification methodologies, immune-compatible healthy iPSC-derived muscle cells can be manufactured to reverse the progression of muscle diseases or facilitate tissue regeneration. Despite this exciting advancement, much of the development of iPSC-based therapies for muscle diseases and tissue regeneration is limited to academic settings, with no successful clinical translation reported. The unknown differentiation process in vivo, potential tumorigenicity, and epigenetic abnormality of transplanted cells are preventing their clinical application. In this review, we give an overview on preclinical development of iPSC-derived myogenic cell transplantation therapies including processes related to iPSC-derived myogenic cells such as differentiation, scaling-up, delivery, and cGMP compliance. And we discuss the potential challenges of each step of clinical translation. Additionally, preclinical model systems for testing myogenic cells intended for clinical applications are described.


Asunto(s)
Células Madre Pluripotentes Inducidas , Distrofias Musculares , Humanos , Células Madre Pluripotentes Inducidas/metabolismo , Músculo Esquelético/fisiología , Distrofias Musculares/metabolismo , Tratamiento Basado en Trasplante de Células y Tejidos , Diferenciación Celular
19.
J Int Soc Sports Nutr ; 21(1): 2341903, 2024 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38626029

RESUMEN

Protein supplementation often refers to increasing the intake of this particular macronutrient through dietary supplements in the form of powders, ready-to-drink shakes, and bars. The primary purpose of protein supplementation is to augment dietary protein intake, aiding individuals in meeting their protein requirements, especially when it may be challenging to do so through regular food (i.e. chicken, beef, fish, pork, etc.) sources alone. A large body of evidence shows that protein has an important role in exercising and sedentary individuals. A PubMed search of "protein and exercise performance" reveals thousands of publications. Despite the considerable volume of evidence, it is somewhat surprising that several persistent questions and misconceptions about protein exist. The following are addressed: 1) Is protein harmful to your kidneys? 2) Does consuming "excess" protein increase fat mass? 3) Can dietary protein have a harmful effect on bone health? 4) Can vegans and vegetarians consume enough protein to support training adaptations? 5) Is cheese or peanut butter a good protein source? 6) Does consuming meat (i.e., animal protein) cause unfavorable health outcomes? 7) Do you need protein if you are not physically active? 8) Do you need to consume protein ≤ 1 hour following resistance training sessions to create an anabolic environment in skeletal muscle? 9) Do endurance athletes need additional protein? 10) Does one need protein supplements to meet the daily requirements of exercise-trained individuals? 11) Is there a limit to how much protein one can consume in a single meal? To address these questions, we have conducted a thorough scientific assessment of the literature concerning protein supplementation.


Asunto(s)
Proteínas en la Dieta , Resistencia Física , Humanos , Resistencia Física/fisiología , Ejercicio Físico/fisiología , Suplementos Dietéticos , Músculo Esquelético/fisiología
20.
FASEB J ; 38(8): e23621, 2024 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-38651653

RESUMEN

Denervated myofibers and senescent cells are hallmarks of skeletal muscle aging. However, sparse research has examined how resistance training affects these outcomes. We investigated the effects of unilateral leg extensor resistance training (2 days/week for 8 weeks) on denervated myofibers, senescent cells, and associated protein markers in apparently healthy middle-aged participants (MA, 55 ± 8 years old, 17 females, 9 males). We obtained dual-leg vastus lateralis (VL) muscle cross-sectional area (mCSA), VL biopsies, and strength assessments before and after training. Fiber cross-sectional area (fCSA), satellite cells (Pax7+), denervated myofibers (NCAM+), senescent cells (p16+ or p21+), proteins associated with denervation and senescence, and senescence-associated secretory phenotype (SASP) proteins were analyzed from biopsy specimens. Leg extensor peak torque increased after training (p < .001), while VL mCSA trended upward (interaction p = .082). No significant changes were observed for Type I/II fCSAs, NCAM+ myofibers, or senescent (p16+ or p21+) cells, albeit satellite cells increased after training (p = .037). While >90% satellite cells were not p16+ or p21+, most p16+ and p21+ cells were Pax7+ (>90% on average). Training altered 13 out of 46 proteins related to muscle-nerve communication (all upregulated, p < .05) and 10 out of 19 proteins related to cellular senescence (9 upregulated, p < .05). Only 1 out of 17 SASP protein increased with training (IGFBP-3, p = .031). In conclusion, resistance training upregulates proteins associated with muscle-nerve communication in MA participants but does not alter NCAM+ myofibers. Moreover, while training increased senescence-related proteins, this coincided with an increase in satellite cells but not alterations in senescent cell content or SASP proteins. These latter findings suggest shorter term resistance training is an unlikely inducer of cellular senescence in apparently healthy middle-aged participants. However, similar study designs are needed in older and diseased populations before definitive conclusions can be drawn.


Asunto(s)
Senescencia Celular , Entrenamiento de Fuerza , Humanos , Entrenamiento de Fuerza/métodos , Masculino , Femenino , Persona de Mediana Edad , Senescencia Celular/fisiología , Fibras Musculares Esqueléticas/metabolismo , Fibras Musculares Esqueléticas/fisiología , Biomarcadores/metabolismo , Células Satélite del Músculo Esquelético/metabolismo , Músculo Esquelético/metabolismo , Músculo Esquelético/fisiología , Factor de Transcripción PAX7/metabolismo , Inhibidor p21 de las Quinasas Dependientes de la Ciclina/metabolismo , Inhibidor p16 de la Quinasa Dependiente de Ciclina/metabolismo , Adulto , Músculo Cuádriceps/metabolismo , Músculo Cuádriceps/inervación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...